
Content - ScriptCad Help
·    Introduction
·    Menu of program
·    Visual design

·    Commands and their description
            · Global variables
            · Line - command Line
            · Dimension Line - command DimLine
            · Text - command Text
            · Point - command Point
            · Rectangle - command Rectangle
            · Fill Area - command FillArea
            · Circle - command Circle
            · Part of Circle - command CirclePart
            · Ellipse - command Ellipse
            · Picture - command Picture
            · Layers
            · Calculated terms
            · Procedures as a definitions of new objects
            · Including of scripts to another scripts - command @include

·    Elements for more commands
            · Colours
            · Thick of Line
            · Line Types
            · Types of hatch
            · Types of arrows

·    Program setting-up (ScrptCad.ini)
·    Printing log and how to print using scale
·    Registration
·    License agreement

Introduction
Program ScriptCad is drawing tool for 2D projects. Program work under Microsoft Windows (Windows
95/98/98SE/ME/2000/XP) and was programmed in Delphi 5 Professional.

ScriptCad has another style of work than other CAD programs. In other programs, there is prefered visual
design. So, user work with mouse, he is clicking at buttons (with symbols of geometrical units) in toolbars.
For all ScriptCad supported this way too (see section Visual design), it is not prefered way. The primary
way for drawing in ScriptCad program is command line programming. Complete index of commands is in
section    Commands and their description.

Menu of program
We write drawing commands (their complete description is in section Commands and their description) in
left part of main window (script area). Then, we can click at Refresh button (or choose menu Drawing-
Refresh) and all drawing is draw again.

Menu Script
Commands from left part of main window can be saved to text files (so called scripts). These scripts has
.vic extension. By menu Script, you can save and open scripts and you can choose font for display scripts
in script area too.

Menu Drawing
Next section of menu is Drawing. By this section of menu, you can refresh drawing (Drawing-Refresh),
you can clear all drawing area, you can hide/show layers (Drawing-Show layers) or you can save drawing
as picture (Drawing-Save drawing as) or you can print drawing on printer (Drawing-Print drawing).

You can save drawing as three types of pictures (BMP, JPG a GIF). Raster (resolution) of picture has the
same size as size drawing area is. For enlarging pictures, you can resize drawing area first. If you enlarge
pictures in some graphic editor, quality will be lower. For enlarging drawing area in ScriptCad program,
you can use command PixelsPerUnit - see section Commands and their description. In addition, you can
choose colour depth for saving pictures (see section Program setting-up - parameter BitsPerPixel).

If you print drawing on printer, drawing is stretched for all printing area (for example A4). With-height ratio
is keeping, of course. If quality of printed drawing is unsatisfactory, you can experiment with parameter
Stretch, see section Program setting-up.

Menu Help
By this section of menu, you can run help file for program (Help-Content) or you can find in this file (Help-
Find). You can run About window (Help-About) or you can switch among languages (Help-Language).

The shortest way for open help file is by pressing key F1.

Visual design
For visual design of drawing, there is context menu of drawing area (right part of main window). You can
choose item from this menu by right mouse click above of drawing area. Each item has differential
number of clicks (for building appropriate object). Some items (objects) do not need additional clicks - e.g.
Comment. Some items (objects) needs one additional click - e.g. Point. Other items (objects) needs two
additional clicks - e.g. Line. First click correspond begin of Line and second click correspond end of Line.

Context menu has these items:

· Line
Command for draw Line is added to script area (left part of main window). For complete action, you must
click to drawing area twice times. First click correspond begin of Line and second click correspond end of
Line. After it, command is assembled, written to script area and runed on drawing area.

· Dimension Line
Command for draw Dimension Line is added to script area. For complete action, you must click to
drawing area twice times.

· Text
Command for writing Text is added to script area. For complete action, you must click to drawing area
once time. The content of text may be changed in script area.

· Point
Command for draw Point is added to script area. For complete action, you must click to drawing area
once time.

· Fill Area
Hatch enclosed area. For complete action, you must click to drawing area once time. Area is enclosed by
points which have another colour.

· Rectangle
Command for draw Rectangle is added to script area. For complete action, you must click to drawing area
twice times. First click correspond left-top corner of Rectangle and second click correspond right-bottom
corner of Rectangle.

· Circle
Command for draw Circle is added to script area. For complete action, you must click to drawing area
twice times. First click correspond circle-centre and second click correspond some point at circumference
of circle.

· Part of Circle
Command for draw Part of Circle is added to script area. For complete action, you must click to drawing
area twice times. First click correspond circle-centre and second click correspond some point at
circumference of circle part.

· Ellipse
Command for draw Ellipse is added to script area. For complete action, you must click to drawing area
twice times. First click correspond left-top corner and second click correspond right-bottom corner of
rectangle - Ellipse is inscribed in this rectangle.

· Picture
Command for insert of picture is added to script area. Path to picture may be absolute path (e.g. "C:\
SomeFolder\example.gif") or relative path (e.g. "example.gif"). If path is relative, then picture is searched

either in folder with program ScrptCad.exe (when script is not saved) or in folder with .vic script, which is
executed.

· Global variables
Section of Global variables is added to script area. This section set up the most important parameters for
(future) drawing. Every drawings may have this section on the beginning. For more information about
Global variables, see section Global variables.

· Layer
Command for switch layer is added to script area. Number of layer must be enter into script. Valid
numbers are integers between 1 and 9.

· Procedure
Command for definition of procedure is added to script area. Then, you can change Procedure name and
number of variables and you can write procedure body. For more information about Procedures, see
section Procedures as a definitions of new objects.

· Comment
Comment is added to script area. Comment is row, what has letter % (per cent) at the beginning.

· Cancel drawing action
Cancel semifinished drawing action.

NOTE: After creating object by above explained methods, you can modify parameters of commands in
script area (left part of main window). In script area, you can delete commands or you can create
commands, that is explained in section Commands and their description. After editing of commands in
script area, you can re-draw drawing by Drawing-Refresh.

NOTE: Visual design of drawing is the easiest way to draw, but has some disadvantages. Problem is
accuracy of drawing. In addition, direct writing of commands is more flexible. More information about
direct writing of commands is in section Commands and their description.

Commands and their description
Visual design of drawing (see section Visual design) is the easiest way to draw, but has some
disadvantages. Problem is accuracy of drawing. In addition, direct writing of commands is more flexible.

Co-ordinate system
Program ScriptCad is tool for 2D drawing. So, co-ordinate system has two axises - x and y. Initial point
of co-ordinate system (the point [0,0]) is placed in left-top corner of drawing area.

X-axis is (horizontal) top edge of drawing area and x-distance is growing from left to right (then maximal
values of x-distance are in right (vertical) edge of drawing area and x-distance is 0 (zero) in left (vertical)
edge of drawing area).

Y-axis is (vertical) left edge of drawing area and y-distance is growing from top to bottom (then maximal
values of y-distance are in bottom (horizontal) edge of drawing area and y-distance is 0 (zero) in top
(horizontal) edge of drawing area).

When mouse cursor is mooving through drawing area, the actual position of mouse (x,y) is displayed at
the bottom part of main window. Co-ordinate values are measured in units, which are defined by global
variable PixelsPerUnit (more informations about this variable and about other global variables are in
section Global variables).

Global variables
Each drawing may have this section on the beginning because global variables set up the most important
parameters for (future) drawing. These global variables are very important, then they have independent
section Global variables.

Comment
Comment is row, what has letter % (per cent) at the beginning. When letter % is not at the beginning of
row (line), then the first part of row is command and the second part of row is comment. All characters
from letter % are ignored (for drawing).

Commands for geometrical units are

      · Line - command Line
      · Dimension Line - command DimLine
      · Text - command Text
      · Point - command Point
      · Rectangle - command Rectangle
      · Fill Area - command FillArea
      · Circle - command Circle
      · Part of Circle - command CirclePart
      · Ellipse - command Ellipse

Global variables
Global variables set up the most important parameters for drawing.There are variables for set up size of
drawing area (variables MaximumX, MaximumY, PixelsPerUnit), colour of background (variable
BackgroundColor), default values for colour of pen (variable DefaultColor), font of texts (variable
DefaultFontName), font size (variable DefaultFontSize), size of angle of arrows and size of arrows in
Dimension Line (variables DefaultDimAngle and DefaultDimLength) and feed of drawing (variables ShiftX
and ShiftY).

MaximumX
It set width of drawing area in units, which are defined by global variable PixelsPerUnit.

MaximumY
It set height of drawing area in units, which are defined by global variable PixelsPerUnit.

PixelsPerUnit
It set, how many pixels are one unit. For example, PixelsPerUnit=10 mean, that one unit is 10 px. All co-
ordinates of geometrical shapes are measured by these units. Variable PixelsPerUnit enable zooming of
drawing at any time. F.g. after double of PixelsPerUnit are doubled all sizes of drawing and drawing area
is enlarged.

BackgroundColor
It set colour of background of drawing (default colour is White).

DefaultColor
It set colour of pen for drawing (default colour is Black). By this colour, all geometrical shapes are drafting
(if command of the object do not set another colour).

DefaultFontName
It set font name (default font is "Arial"). Font name must be in quotation marks.

DefaultFontSize
It set font size (default is 8). If PixelsPerUnit=1, then this setting for DefaultFontSize is compliant. If you
set PixelsPerUnit to greater value, you can set DefaultFontSize to lower value!

DefaultDimAngle
It set angle of arrow in Dimension Line. Default value is 10.

DefaultDimLength
It set size of arrow in Dimension Line. Default value is 10 units. If PixelsPerUnit=1, then this setting for
DefaultDimLength is compliant. If you set PixelsPerUnit to greater value, you can set DefaultDimLength to
lower value!

ShiftX
It move all drawing in way of x-axis (units depended on PixelsPerUnit). By this way, you can move all
drawing without re-creating co-ordinate values in all objects. Attention: After using ShiftX and ShiftY,
the actual position of mouse (x,y), which is displayed at the bottom part of main window, is wrong.

ShiftY
It move all drawing in way of y-axis.

Note: Commands (such as Line, Circle etc.) may use global variables DefaultColor, DefaultDimAngle,
DefaultDimLength, DefaultFontName and DefaultFontSize. For example, if DefaultColor=Blue, then
commands Point 124, 169, DefaultColor and Point 124, 169, Blue are the same.

Attention: Variables MaximumX, MaximumY, PixelsPerUnit and BackgroundColor are very important. If
you re-set any variable (one from these four), then drawing area is deleted! Accordingly this feature, you
must set these variables at the beginning of drawing (beginning of script).

Note: X-size of drawing in pixels is MaximumX * PixelsPerUnit. Y-size of drawing in pixels is MaximumY *
PixelsPerUnit.

Note: If size of drawing is small, then visual defect may occur, because resolution is low. Visual defects
will be eliminated by enlargement of variable PixelsPerUnit).

Note: Variable PixelsPerUnit must be adjusted after variables MaximumX and MaximumY!! Otherwise,
following situation may arise: for example
      PixelsPerUnit = 1
      MaximumX = 500
      MaximumY = 400
Against recommendation, PixelsPerUnit is in first place. Whats hapened? First run of script set size of
drawing area to 500 px x 400 px. Then we change units and we write
      PixelsPerUnit = 100
      MaximumX = 5
      MaximumY = 4
Now, size of drawing area is 500 px x 400 px too, but this method is wrong. Script is executed command
by command, then first command PixelsPerUnit=100 make area    50000 px x 40000 px (because still
MaximumX = 500 and MaximumY = 400). Consecutively, area will be reduce, but previous commands
spend all memory yet. Then program may occur memory error!

Line - command Line
Universal form: Line x1, y1, x2, y2, LineType, ThickLine, LineColour
Minimum form: Line x1, y1, x2, y2
Example: Line 87, 71, 320, 226, Solid, 1, Blue

(x1, y1) ... initial point of line (1 2 3 4)
(x2, y2) ... terminal point of line (1 2 3 4)
LineType ... see Line Types
ThickLine ... see Thick of Line
LineColour ... see Colours

If some parameters are missing (compare universal form with minimum form), then LineType is Solid,
ThickLine is 1 and LineColour is DefaultColor from global variables.

Dimension Line - command DimLine
Universal form: DimLine x1, y1, ArrowType1, x2, y2, ArrowType2, LineType, ThickLine,
LineColour, ArrowAngle, ArrowLength
Minimum form: DimLine x1, y1, ArrowType1, x2, y2, ArrowType2
Example: DimLine 104, 232, Inner, 310, 52, Inner, Solid, 1, Black, 10, 8

(x1, y1) ... initial point of Dimension Line (1 2 3 4)
ArrowType1 ... Type of arrow at initial point
(x2, y2) ... terminal point of Dimension Line (1 2 3 4)
ArrowType2 ... Type of arrow at terminal point
LineType ... see Line Types
ThickLine ... see Thick of Line
LineColour ... see Colours
ArrowAngle ... is angle between main line and arrow (at terminal point)
ArrowLength ... is length of arrow (in units defined by variable PixelsPerUnit) (1 2 3 4)

If some parameters are missing, then LineType is Solid, ThickLine is 1, LineColour is global variable
DefaultColor, ArrowAngle is global variable DefaultDimAngle and ArrowLength is global variable
DefaultDimLength.

Text - command Text
Universal form: Text x, y, CharacterSet, IsBold,IsItalic,IsUnderline,IsStrikeOut, FontName,
TextColour, FontSize, AngleOfText
Minimum form: Text x, y, CharacterSet
Example: Text 179, 225, "Text is here", 0,0,0,0, "Arial", Red, 12, 90

(x, y) ... point, where is initial letter of text (1 2 3 4)
CharacterSet ... text, which will be displayed (all text must be in quotation marks) (texts may be
joined "he" + "llo")
IsBold ... text is bold (IsBold=1) or standard (IsBold=0)
IsItalic ... text is slanted (IsItalic=1) or standard (IsItalic=0)
IsUnderline ... text is underlined (IsUnderline=1) or standard (IsUnderline=0)
IsStrikeOut ... text is striked (IsStrikeOut=1) or standard (IsStrikeOut=0)
FontName ... Font Name. It must be in quotation marks
         (f.g. "MS Sans Serif"). Font must be in operating system (Windows).
         You can display index of all accessible fonts by menu Script-Font.
TextColour ... see Colours
FontSize ... size of font (in units defined by variable PixelsPerUnit) (1 2 3 4)
AngleOfText ... angle of text. You can write horizontal (AngleOfText=0) or vertical
(AngleOfText=90) or you can choose another angle (in degrees).

If some parameters are missing, then IsBold=0, IsItalic=0, IsUnderline=0, IsStrikeOut=0, FontName is
global variable DefaultFontName, TextColour is global variable DefaultColor, FontSize is global variable
DefaultFontSize and AngleOfText is 0 degrees.

Point - command Point
Universal form: Point x, y, Colour
Minimum form: Point x, y
Example: Point 201, 182, Green

(x, y) ... co-ordinate of point (1 2 3 4)
Colour ... colour of point

If parameter Colour is missing, then Colour is global variable DefaultColor.

Rectangle - command Rectangle
Universal form: Rectangle x1, y1, x2, y2, LineType, ThickLine, LineColour
Minimum form: Rectangle x1, y1, x2, y2
Example: Rectangle 101, 233, 185, 293, Dot, 1, Gray

(x1, y1) ... left-top corner of rectangle (1 2 3 4)
(x2, y2) ... right-bottom corner of rectangle (1 2 3 4)
LineType ... see Line Types
ThickLine ... see Thick of Line
LineColour ... see Colours

If some parameters are missing, then LineType is Solid, ThickLine is 1 and LineColour is DefaultColor
from global variables.

Fill Area - command FillArea
Universal form: FillArea x, y, TypeOfHatch, ColourOfHatch
Minimum form: FillArea x, y
Example: FillArea 179, 75, BDiagonal, Gray

TypeOfHatch ... see Types of hatch
ColourOfHatch ... see Colours
(x, y) ... co-ordinate of point, which is into some closed area. Area is closed by points,
which have another colour then initial point (x, y) (1 2 3 4) .

If some parameters are missing, then TypeOfHatch is Solid and ColourOfHatch is DefaultColor from
global variables.

Circle - command Circle
Universal form: Circle x, y, Radius, LineType, ThickLine, LineColour
Minimum form: Circle x, y, Radius
Example: Circle 269, 293, 79, Solid, 1, NavyBlue

(x, y) ... middle of circle (1 2 3 4)
Radius ... radius of circle (in units defined by variable PixelsPerUnit) (1 2 3 4)
LineType ... see Line Types
ThickLine ... see Thick of Line
LineColour ... see Colours

If some parameters are missing, then LineType is Solid, ThickLine is 1 and LineColour is DefaultColor
from global variables.

Part of Circle - command CirclePart
Universal form: CirclePart x, y, Radius, FromAngle, ToAngle, LineType, ThickLine, LineColour
Minimum form: CirclePart x, y, Radius, FromAngle, ToAngle
Example: CirclePart 69, 239, 60, 90, 180, Solid, 1, Black

(x, y) ... middle of circle (1 2 3 4)
Radius ... radius of circle (in units defined by variable PixelsPerUnit) (1 2 3 4)
FromAngle, ToAngle ... it define, how long part of circle will be drawn (in degrees) (1 2 3 4) .

1st quadrant is 0-90 degrees,
2nd quadrant is 90-180 degrees,
3rd quadrant is 180-270 degrees,
4th quadrant is 270-360 degrees.
Only integers are acceptable.

LineType ... see Line Types
ThickLine ... see Thick of Line
LineColour ... see Colours

If some parameters are missing, then LineType is Solid, ThickLine is 1 and LineColour is DefaultColor
from global variables.

Ellipse - command Ellipse
Universal form: Ellipse x1, y1, x2, y2, LineType, ThickLine, LineColour
Minimum form: Ellipse x1, y1, x2, y2
Example: Ellipse 125, 197, 191, 232, Solid, 1, Blue

(x1, y1) ... left-top corner of rectangle, where ellipse is inscribed (1 2 3 4)
(x2, y2) ... right-bottom corner of rectangle (1 2 3 4)
LineType ... see Line Types
ThickLine ... see Thick of Line
LineColour ... see Colours

If some parameters are missing, then LineType is Solid, ThickLine is 1 and LineColour is DefaultColor
from global variables.

Colours
In ScriptCad program, following colours are enabled (for geometrical objects):

Aqua, Black, Blue, DarkGray, Fuchsia, Gray, Green, LimeGreen, LightGray, Maroon, NavyBlue,
OliveGreen, Purple, Red, Silver, Teal, White, Yellow.

Note: You can use not only concrete colour (f.g. Black), but you can use also global variable DefaultColor.
For example, if DefaultColor=Blue, then commands Point 124, 169, DefaultColor and Point 124, 169, Blue
are the same.

Thick of Line
Thick of Line is measured by pixels (NOT by units, which are defined by global variable PixelsPerUnit)!
Primary thick is 1 px - then all line types are enabled. When thick of line is greater than 1, only Solid type
of line is enabled.

Line Types
Following types of line are enabled in ScriptCad program:

    Solid
    Dash
    Dot
    DashDot
    DashDotDot

Note: When thick of line is greater than 1, only Solid type of line is enabled.

Types of hatch
You can use following types of hatch:

Solid ... full hatch
BDiagonal ... diagonal hatch (hatch are uprised)
FDiagonal ... diagonal hatch (hatch are subsided)
Cross ... tiles
DiagCross ... diagonal tiles
Horizontal ... horizontal hatch
Vertical ... vertical hatch

Types of arrows
You can use following three types of arrows:

Inner ... inner arrow in Dimension Line
Outer ... outer arrow in Dimension Line
None ... without arrow

Program setting-up (ScrptCad.ini)
All settings are in file ScrptCad.ini. This file is in the same directory as program ScrptCad.exe. File must
be writable (not read-only), otherwise settings will not be saved.

ScrptCad.ini has 4 sections.

In section [MainForm], there is saved size and position of main window of program ScriptCad on
Windows Desktop (variables Height, Width, Left and Top), also size of left part of main window (script
area) is saved (variable Splitter). For language settings, there is variable Language (1000 for English and
2000 for Czech). Variable DemoScript indicate, whether demonstration script demo.vic was ran at first run
of program ScriptCad.

In section [ScriptFont], there are information about font, which display scripts at script area.

In section [Layers], there are information about showing/hiding of layers of drawing.

In section [Print], there you can set print parameters.
Variable BitsPerPixel set colour depth for saving pictures/drawings (Drawing-Save drawing as). Default
value is BitsPerPixel=4. It mean, that colour depth is 4-bit (i.e. 16 colours). It is enought, because
program ScriptCad support only these colours. If you want to have greater colour depth, you can set
variable BitsPerPixel to another value:

BitsPerPixel=8 for 256 colours,
BitsPerPixel=16 for 65536 colours
BitsPerPixel=24 for 16777216 colours and
BitsPerPixel=32 for 4294967296 colours.

Variable Stretch set, how many times drawing will be stretched (zoom) during printing.
Situation will be explained as example: let x-size of drawing (in right part of main window of ScriptCad
program) is 100 pixels and x-resolution of printer is 6000 pixels (it depend on size of print page - f.g. A4 -
and it depend also on print quality (dpi)). Y-co-ordinate of drawing do not reflected (it is simple example).
On default setting Stretch=4, the drawing will be enlarged in program ScriptCad from initial size 100 px to
1500 px - this enlargement is vector (without damage of quality - this type of enlargement is similar as
growing of global variable PixelsPerUnit (see section Global variables). Value 1500 px is four times lesser
(because Stretch=4) than x-resolution of printer (now 6000 px). Enlarged drawing (1500 px) will be stretch
4 times at printer, so x-resolution will be 6000 px. This method is optimal, but you can also change
variable Stretch. Range is from 1 (smooth picture (hatch chiefly)) to 10 (rough draft).

Sections    [MainForm], [ScriptFont] and [Layers] are autamatically used and changed by program
ScriptCad. But section [Print] is only for manual changes, because author of this program think, that these
settings are low-level (only for advanced users). New values in section [Print] will be forcible at next start
of ScriptCad program.

Registration
Program ScriptCad is shareware application. Test period is 30 days. If you decide to keep this program
after the test period, you must register the program at e-mail address vincze@ji.cz. One license (license
per one computer) cost 10 USD. Registration key is a new file license.dll, what will be sended to you. This
file must be placed in directory, where program ScrptCad.exe is. Registration key will be valid for all future
versions of ScriptCad program, so buying upgrade will not be necessary. New versions of ScriptCad
program are enabled at web address of the author: http://vincze.czweb.org.

License agreement
The owner of this software is Ing.Roman VINCZE. The software product is licensed, not sold. The
software product is protected by copyright laws and international copyright treaties, as well as other
property laws and treaties. You may not analyze, decompile, or disassemble the software product or any
component thereof. You may make copies of the software product, but only for reserve.

NO WARRANTY.
No warranty of any kind is expressed or implied. ScriptCad software is distributed "as is". You use it at
your own risk.

NO LIABILITY FOR DAMAGES.
The author is not liable for any data loss, damages, loss of profits or any other kind of loss while using or
misusing this software.

Layers
Program ScriptCad support drawing into layers. You may have 9 layers (max). If you want to draw (for
example) into 2nd layer, you can use command Layer = NumberOfLayer (Layer = 2). NumberOfLayer
must be between 1 and 9. Example:

command (draw into 1st layer)
Layer = 2
command (draw into 2nd layer)
command (draw into 2nd layer)
command (draw into 2nd layer)
Layer = 3
command (draw into 3rd layer)
Layer = 1
command (draw into 1st layer)
command (draw into 1st layer)

Commands for global variables are forcible for all layers. For example, if you set variable MaximumX,
then this setting is valid for rest drawing (all layers). Commands as Line or Rectangle etc. refer only for
one layer.

For displaying/hiding layers, there is menu Drawing-Show layers or you can use checkboxes Layers on
toolbar. You can use any combination from 9 layers.

Note: For adding command Layer into script, you can use context menu above of drawing area too.

Note: If you use visual design (drawing by context menu above of drawing area), then objects are drawn
without reference to layers (at first). Until you press Drawing-Refresh, objects are drawn into right layers.

Picture - command Picture
Universal form: Picture x, y, Path, Width, Height
Minimum form: Picture x, y, Path
Example: Picture 15, 100, "C:\SomeFolder\example.gif", 19, 19

(x, y) ... left-top corner of picture (in units defined by variable PixelsPerUnit) (1 2 3 4)
Path ... picture path on harddisk (it must be in quotation marks)
Width ... picture width (in units defined by variable PixelsPerUnit) (1 2 3 4)
Height ... picture height (in units defined by variable PixelsPerUnit) (1 2 3 4)

Parameter Path may be absolute path (e.g. "C:\SomeFolder\example.gif") or relative path (e.g.
"example.gif"). If path is relative, then picture is searched either in folder with program ScrptCad.exe
(when script is not saved) or in folder with .vic script, which is executed.

You can insert these pictures: bmp, gif, jpg, jpeg.

Parameters Width and Height may be missing. Then, the picture is inserted with it's true resolution and it's
width and height will be fixed, independent from variable PixelsPerUnit. If parameters Width and Height
are presented, then the picture is stretched into defined area.

NOTE: Drawing area in ScriptCad program has 4-bit colour depth. Then, if inserted picture has more
colours, it's colours will be reduced. If you want to keep more colours, you can set variable BitsPerPixel in
file ScrptCad.ini in section [Print] - more information about it is in section Program setting-up.

Calculated terms
Calculated term is term, which may be calculated as number. It may be number (e.g. 5 or -3.2) or it may
be composite of numbers and elementary mathematical operations (plus, minus, times, divide and
parenthesis):
        3 + 5
        3 * 2.3
        3 - 2 * 5
        3 / (1 + 2)

Example: If you write
      Line 100 + 50, 50 * 2, 300 - 100, 500/10, Solid, 1, DefaultColor
then it is the same as
      Line 150, 100, 200, 50, Solid, 1, DefaultColor

Calculated terms are important for Procedures as a definitions of new objects. In this documentation,
there is used symbol (1234) for calculated terms (see individual commands).

Procedures as a definitions of new objects
By procedures, you can create own objects for drawing. After create of procedure, you can use it as well
as native command of program ScriptCad.

Declaration of procedure
Procedure begin by key-word Procedure, then there is procedure name and variables. Variables are
segregated by commas and their names must begin by #. Next lines contain body of procedure
(commands, which are drawn in procedure use). Definition of procedure finish by key-word End.

Example of declaration of procedure
You can see script demo2.vic for using procedures. This script contain next procedure (draw battery):

Procedure Battery #x, #y
      Line #x, #y-1.5, #x, #y+1.5, Solid, 1, DefaultColor
      Line #x + 0.3, #y - 3, #x + 0.3, #y + 3, Solid, 1, DefaultColor
      Text #x + 0.2, #y - 4.9, "+", 0,0,0,0, DefaultFontName, DefaultColor, DefaultFontSize, 0
      Line #x + 0.3, #y, #x + 1.5, #y, Solid, 1, DefaultColor
End

Application of procedure
After create of procedure, you can use it as well as native drawing command, so e.g. commands ...

Battery 18, 7
Battery 19.5, 7
Battery 21, 7
Battery 22.5, 7

... draw battery, which has four cells. Variables #x and #y are co-ordinates. You can create special text file
with declarations of procedures and you can insert this script into another scripts by command @include.

Including of scripts to another scripts - command @include
In section Procedures as a definitions of new objects is described using of procedures. You can create
special text file with declarations of procedures and you can insert this script into another scripts.

Universal form: @include Path
Example: @include "C:\SomeFolder\myfile.vic"

Path is path of file on harddisk (it must be in quotation marks). If you write @include "myfile.vic", then all
content of file "myfile.vic" will be placed at this position.

Parameter Path may be absolute path (e.g. "C:\SomeFolder\myfile.vic") or relative path (e.g. "myfile.vic").
If path is relative, then file is searched either in folder with program ScrptCad.exe (when script is not
saved) or in folder with .vic script, which is executed.

Note: Only 1st level for including is supported. So included (library) scripts cannot use @include
command again.

Printing log and how to print using scale
Printing log LastPrint.log
When you print drawing at a printer, program ScriptCad make text file with faithful information about print.
This file is named LastPrint.log and it is created in folder with program ScrptCad.exe. This file is created
again and again for each print (so older information about printing are not saved). There is example of the
file LastPrint.log and explanation of its content:

ScriptName: C:\MyFolder\demo.vic ... script name
Date: 10/10/2006 16:06:34 ... date
Printer: Samsung ML-1510_700 Series ... printer name
PixelsPerInch: 600 dpi x 600 dpi ... resolution (pixels per inch)
PageWidth: 4756 ... page width in pixels
PageHeight: 6810 ... page height in pixels
PageRes: 4756 x 6810 ... page width x height in pixels
PageRes (cm): 20.13 x 28.83 ... page width x height in centimetres
PhysPageSize: 4960 x 7014 ... page width x height with borders in
pixels
PhysPageSize (cm): 21.00 x 29.69 ... page width x height with borders in
centimetres
Orientation: Portrait ... orientation of print (Portrait or
Landscape)

Program ScriptCad use whole printing area, which is defined by PageRes - drawing is stretched during
printing. In section Program setting-up (ScrptCad.ini) you can read more about print settings (colour
depth).

Drawing and exact scale
For example, we have some (constructive) drawing and we want to print it at exact scale 1:50. Because
program ScriptCad use stretch for printing and because each printer have another resolution (300 dpi,
600 dpi, ...) and page size (A4, A3, ...) and size of borders (compare PageRes and PhysPageSize), user
must calculate some specifications.

For example, we have drawing of house in a file myhouse.vic. Real house have (some) wall 8 metres and
we want scale 1:50. So we want to have this length 8:50 = 0.16 metre = 16 cm at the printer. Our printer
use A4 format and let height is smaller then width. Then printing area have width = 20.13 cm (width
without borders - see PageRes (cm)). If you select MaximumX = 20.13 and wall is ...

      Line 3, 5, 19, 5, Solid, 1, DefaultColor

... then wall have 16 cm at the paper (because 19 - 3 = 16 - and it is length of wall).

Change of printer
If drawing is finihed, you cannot change MaximumX and MaximumY for printing. Then, you can calculate
backward - from MaximumX and required scale you can calculate PageRes. But in this case, calculated
PageRes is not standard (A4, A3, ...). Example: MaximumX = 12 and we want width of drawing = 12 cm.
Then, we must set (at printing) custom page size - width = 12 cm (without borders).

